An Asymptotically Optimal Model for Isotropic Heterogeneous Linearly Elastic Plates

نویسندگان

  • FERDINANDO AURICCHIO
  • CARLO LOVADINA
  • ALEXANDRE L. MADUREIRA
چکیده

Abstract. In this paper, we derive and analyze a Reissner–Mindlin–like model for isotropic heterogeneous linearly elastic plates. The modeling procedure is based on a Hellinger– Reissner principle, which we modify to derive consistent models. Due to the material heterogeneity, the classical polynomial profiles for the plate shear stress are replaced by more sophisticated choices, that are asymptotically correct. In the homogeneous case we recover a Reissner–Mindlin model with 5/6 as shear correction factor. Asymptotic expansions are used to estimate the modeling error. We remark that our derivation is not based on asymptotic arguments only. Thus, the model obtained is more sophisticated (and accurate) than simply taking the asymptotic limit of the three dimensional problem. Moreover, we do not assume periodicity of the heterogeneities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical and Numerical Modelling of the Axisymmetric Bending of Circular Sandwich Plates with the Nonlinear Elastic Core Material

Herein paper compares the analytical model with the FEM based numerical model of the axisymmetric bending of circular sandwich plates. Also, the paper describes equations of the circular symmetrical sandwich plates bending with isotropic face sheets and the nonlinear elastic core material. The method of constructing an analytical solution of nonlinear differential equations has been described. ...

متن کامل

BUCKLING ANALYSIS OF FUNCTIONALLY GRADED MINDLIN PLATES SUBJECTED TO LINEARLY VARYING IN-PLANE LOADING USING POWER SERIES METHOD OF FROBENIUS

In this paper, buckling behavior of moderately thick functionally graded rectangular plates resting on elastic foundation subjected to linearly varying in-plane loading is investigated. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. Based on the first-order shear deformation plate theory and the neutral s...

متن کامل

A Semi-analytical Solution for 3-D Dynamic Analysis of Thick Continuously Graded Carbon Nanotube-reinforced Annular Plates Resting on a Two-parameter Elastic Foundation

The The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of elastically supported continuously graded carbon nanotube-reinforced (CGCNTR) annular plates. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. An equivalent continuum model based on the Eshelby-M...

متن کامل

Three-dimensional elasticity solution for vibrational analysis of thick continuously graded sandwich plates with different boundary conditions using a two-parameter micromechanical model for agglomeration

An equivalent continuum model based on the Eshelby-Mori-Tanaka approach was employed to estimate the effective constitutive law for an elastic isotropic medium (i.e., the matrix) with oriented straight carbon nanotubes (CNTs). The two-dimensional generalized differential quadrature method was an efficient and accurate numerical tool for discretizing equations of motion and for implementing vari...

متن کامل

Optimal Shape Remodelling of Linearly Elastic Plates Using Finite Element Methods

The optimality conditions for the optimal shape remodelling of linearly elastic plates are obtained by introducing the total variation of a function defined on a variable domain, although the variation of a function has been taken on a fixed domain in most literature on calculus of variations. Using these optimality conditions, a solution scheme involving an iterative algorithm is proposed, tog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003